
Implementation of a Transistor Placement Method
Based on Boolean Satisfiability into ASTRAN CAD

Tool
Andrei A. O. Bubolz, Gustavo H. Smaniotto, Leomar S. da Rosa Jr., Maicon S. Cardoso, Felipe de S. Marques

Group of Architectures and Integrated Circuits (GACI)
Federal University of Pelotas (UFPel)

Pelotas, Brazil
{aaobubolz, ghsmaniotto, leomarjr, mscardoso, felipem}@inf.ufpel.edu.br

Abstract—This paper presents an alternative transistor place-
ment method for the open source automatic layout generation
tool ASTRAN, which currently implements a Threshold Ac-
cepting methodology for this purpose. Although it reaches an
optimized solution, ASTRAN does not guarantee the minimum-
width solution. The method presented in this paper is based on
Boolean Satisfiability and ensures the minimum-width multi-row
transistor placement by formulating the problem into a set of
variables and clauses described through four design constraints.
Experiments comparing the proposed method and the current
ASTRAN placement have shown average gains of 3.02% and
12.05% in the cell area and contact number, respectively. Further-
more, it has presented a slightly overhead of 0.82% on average
concerning the wirelength.

Index Terms—Transistor Placement, Boolean Satisfiability,
SAT, EDA Tool, ASTRAN.

I. INTRODUCTION

Optimizations in the logic and physical synthesis are crucial
factors for improving VLSI circuits. Recently, several papers
pointed out that the on-the-fly design of complex gates pro-
vides improvements in different aspects of the digital design
such as area, power, and delay.

One of the most important methods for the optimized
physical synthesis of complex gate cells is the transistor
placement [1]. Through this procedure, it is possible to obtain
gains in different attributes of the final layout (wirelength and
number of contacts).

The first placement method was proposed by Uehara and
vanCleemput [2], where the width minimization of dual net-
works is obtained through a graph-based approach that aims to
find a solution with the minimum number of diffusion breaks.
It also proposes the linear-matrix (1D) layout style, where the
transistors are placed exclusively in one direction along two
P/N diffusion rows.

Logic gates in real circuits are sized to optimize circuit
performance [3] and hence, transistor sizing and folding must
be efficiently handled. In this scenario, Gupta and Hayes [4]
proposed a method to generate layouts without any structure
constraints, producing cells with a different number of P and
N-type transistors and divergent transistor widths (via folding).

Regarding the width minimization for dual circuits, Carlson
[5] addresses this problem for non-series-parallel planar cir-
cuits through an heuristic-based algorithm. Although obtaining
optimized results, most of these methodologies do not guar-
antee the minimum width placement of the transistors, i.e. the
optimal solution in terms of area. Iizuka, Ikeda and Asada
[6], [7] proposes a Boolean Satisfiability (SAT) approach
introducing an optimal placement method for both dual and
non-dual transistor networks. This technique consists in to
describe a specific problem into a set of Boolean expressions
(clauses) and determine whether there are variable assignments
that satisfy all these clauses.

Several solutions were proposed integrating placement
methods with a complete cell design flow [8]–[10]. These
CAD tools uses different techniques for placement in order
to produce optimized layouts for dual and non-dual logic net-
works. For instance, while Layout Synthesizer [8] heuristically
pair transistors to be placed, LiB [9] identifies strongly con-
nected clusters and form pairs of each cluster. ASTRAN [10], a
CAD tool for complex gate design, uses a Threshold Accepting
technique to determine a placement solution that maximizes
the diffusion sharing and minimizes the interconnection length.
This methodology is based on a local search method that
starts from a random feasible placement and then explores
its neighborhood looking for a better solution. However, this
method eventually gets stuck in a local minimum, not reaching
the optimal placement.

The transistor placement methodology proposed in this
paper aims to avoid this problem using a Boolean Satisfiability
approach originally introduced by Iizuka, Ikeda and Asada [6],
[7]. Besides that, our proposition is able to deal with CMOS
transistor networks with any structure, ensuring the minimum
number of diffusion breaks and the optimal solution in terms
of area in a feasible computational time.

II. PROPOSED METHODOLOGY

This section will describe all the steps of our placement
methodology. It is important to point out that our approach is
based on the method described in [6], [7]. It was proposed
a simplification of its constraints in order to optimize the

methodology (in terms of number of variables and clauses)
for dual and non-dual 1D layouts.

A. Problem Definition

The input of the proposed method is a transistor-level
description of the complex gate, i.e. a spice netlist containing
the pull-up and pull-down transistors.

In the 1D layout style adopted (Fig. 1), the transistors
are divided into two rows containing the PMOS and the
NMOS devices, respectively. Each transistor is expressed by
a set of main variables that represent all possible placement
configurations, as shown in Table I. The initial size of this set
depends on the number of transistors of the netlist.

To generate the set of SAT clauses, four steps are performed.
The first one is a simplification step, while the remaining
implements the placement constraints. In this process, internal
variables are created in order to represent intermediate results
of these clauses, without meaning to the placement problem.

B. Variable Transistor

This component operates like a gap in the placement prob-
lem: diverging from the “conventional” transistor, it might
assume dynamic values in their terminals, allowing to be
placed in any position of the cell, i.e. the neighborhood
of any other transistor. Moreover, the flipped variables of
these components are not created, avoiding unnecessary and
redundant clauses. There are two distinct situations in which
a variable transistor may be employed: (1) in case of there are
different number of P-type and N-type transistors in the given
input, where the necessary number of components is added to
complete the equality; (2) after each iteration resulting in an
unsatisfiable placement, in which a variable transistor is added
in each row, increasing the number of columns of the cell and
consequently, the width of the potential solution. After this, the
algorithm redefines variables and clauses in order to proceed
with the computation.

C. Variables Reduction

This step is executed only in the first iteration, where at
least one row is free of gaps. The goal of this procedure
is the reduction of the total number of variables, which is
performed through the analysis of each position where a
transistor can be placed. First, the source and drain identifiers
of all the transistors in the same row are stored. Then, for the
terminals that appear only once, defined as unique terminals,
two possible scenarios (according to the size of this list) are
taken.

Zero unique terminals: there is nothing to be simplified.
The algorithm proceeds to the creation of the placement
constraints.

TABLE I
SET OF VARIABLES USED FOR THE FORMULATION

Name The condition that assigns the variable true Set size
Tp(i, c, f) PMOS i placed in column c with orientation f 2P2

Tn(j, c, f) NMOS j placed in column c with orientation f 2N2

Fig. 1. 1D layout style adopted.

One or two unique terminals: transistors with unique
terminals can be placed exclusively at the extremities (first
and last column).

To exemplify this, consider the PMOS transistor network
illustrated in Fig. 2, where we can see that at least one of
its internal nodes (p1 and p2) are present in all switches. On
another hand, the external nodes (VDD and output) appear
only once, i.e. they are considered unique terminals of the
network. In this scenario, through the procedure described, the
number of main variables decrease from 100 to 72, while the
number of clauses reduces from 3797 to 2525, corresponding
to a 28.0% and 33.5% reduction, respectively.

Therefore, a considerable amount of variables can be elim-
inated since the fact that these transistors cannot be placed in
the intermediate positions of the cell.

D. Transistor Allocation Constraint

Each transistor must be allocated exclusively in one column.
The clauses that implement this constraint are presented below
(1).

P∧
i=1

{ ∧
f ∈(f ,nf)

{ P−1∨
c=0

Tp(i, c, f)∧

{ P−2∧
j=0

P−1∧
k=j+1

[
¬Tp(i, j, f) ∨ ¬Tp(i, k, f)

]}}} (1)

The same formula is applied to all N-type transistors.

E. Empty Column Constraint

Columns cannot have overlapping transistors. The clauses
that implement this constraint are presented below (2).

P∧
c=1

{ ∧
f ∈(f ,nf)

[P∨
i=1

Tp(i, c, f)
]}

(2)

The same formula is applied to all N-type columns.

F. Horizontal Neighborhood Constraint

All transistors must have its lateral neighbors with equiva-
lent source and drain values, with the exception of those placed
in the extremities, which only need one of these.

First, all the m pairs of placement configurations are ar-
ranged in a list according to their source and drain values.

Fig. 2. PMOS logic plan of the complex gate implementing f =!(a+(b.c.d)+
e).

Considering all the possible associations, its necessary to place
exclusively one of these in each neighborhood. The clauses
that implement this constraint is presented below (3).

P−1∧
N=1

{ ∧
f ∈(f ,nf)

{ m−1∨
i=0

Ui(Tx,Ty, N)
∧

{ m−2∧
j=0

m−1∧
k=j+1

[
¬Ui(Tx,Ty, N) ∨ ¬Ui(Tx,Ty, N)

]}}} (3)

where Ui(Tx,Ty, N) represents one of the m possible associa-
tions between the transistors Tp(x, c, f) and Tp(y, c + 1, f) in
the neighborhood N (between c and c+1) and P is the current
number of P-type transistors.

The same formula is applied to all N-type neighborhoods.

G. Vertical Neighborhood Constraint

All P and N-type transistors placed in the same column
must share their gate terminals. In other words, if there is a
transistor Tpx placed in the column C, a transistor Tny with
the same gate must be placed in the column C.

First, all m pair of possibilities are arranged in a list
according to their gate values. Considering all the possible
associations, its necessary to place exclusively one of these in
each column. The clauses that implement this constraint are
presented below (4).

P∧
C=1

{ ∧
f ∈(f ,nf)

{ m−1∨
i=0

Ui(Tpx,Tny,C)
∧

{ m−2∧
j=0

m−1∧
k=j+1

[
¬Ui(Tpx,Tny,C) ∨ ¬Ui(Tpx,Tny,C)

]}}} (4)

where Ui(Tpx,Tny,C) represents one of the m possible associ-
ations between the transistors Tp(x, c, f) and Tn(y, c, f) in the
column C and P is the current number of P-type transistors.

H. Satisfiability Verification

After computing all the steps presented above, the CNF file
containing all the clauses is written in order to be computed by
the SAT solver. The solver returns the first satisfiable assign-
ments for the variables if it exists. In case of unsatisfiability,
variable transistors are applied according to the procedure
described in subsection 3.B.

The complete pseudocode of our method is shown in
Algorithm 1.

III. EXPERIMENTAL RESULTS

Layout analysis allowed us to evaluate the proposed solu-
tion, comparing it to placement methodology implemented into
the ASTRAN tool. Through this procedure, it was possible to
characterize important geometrical parameters: total cell area,
total wirelength, and the number of contacts.

In order to obtain the placement solutions of our method-
ology, we have used CryptoMiniSat [11] as SAT solver. This
tool can efficiently handle large quantities of clauses through
Gaussian elimination techniques.

The experiments were performed under a well-known
benchmark containing 53 handcrafted complex gate cells [12].
The transistor sizing was performed through the Logical Effort
methodology [13]. Folding procedure was not applied for
any of the cases. We adopted the STMicroelectronics 65nm
technology node for the cell synthesis. Fig. 3 shows the
obtained results which represent the optimization percentage
regarding the layout obtained through the proposed method-
ology relative to the solutions produced by the placement
method of ASTRAN. The improvements achieved by our
proposition are illustrated by the positive y-axis values (blue
columns), while the overheads are represented by the negative
y-axis values (red columns). It is important to notice that the
last column represents the average values of each analyzed
parameter.

The first observed aspect was the layout area, where our
approach delivers a cell with 3.02% less area (on average)
compared to the original method, with a standard deviation
of 5.67%. In most of the cases (88.68%) an equal or smaller
area was obtained. On another hand, in some solutions, despite
getting an improvement in terms of the number of diffusion
breaks, a larger area was obtained. This was caused due to
the fact that the proposed algorithm do not consider the cell
routing and compaction, routines that potentially increases the
layout wirelength, leading to increments in the total layout
area. The best-case scenario has presented an optimization of
16.20%, while the worst case showed an increase of 8.10% in
this aspect.

Algorithm 1 Pseudocode of the Placement Process
1: transistors ← getTransistorList(SpiceFile)
2: addVariableTransistors(getListWithFewerTrans())
3: SAT ← false
4: while (!SAT) do
5: V ← createVariableList(transistors)
6: C ← createClauseList(V)
7: result ← executeSATSolver(V, C)
8: if (isSatisfiable(result)) then
9: SAT ← true

10: else
11: addVariableTransistors(transistors)
12: end if
13: end while
14: finalPlacement ← computeResult(transistors, result)

The second observed aspect was the total wirelength (con-
sidering metal 1 and polysilicon), where our methodology
obtained an overhead of 0.82% (on average) in comparison
with the solutions produced by the original method, with a
standard deviation of 7.02%.

Finally, the last observed parameter was the total number of
contacts, where we obtained a reduction of 12.05% on average,
with a standard deviation of 9.05%.

IV. CONCLUSIONS AND FUTURE WORKS

This paper proposes an alternative transistor placement
method for the ASTRAN cell generator aiming geometrical
improvements in the layouts produced by this tool. ASTRAN
currently implements a Threshold Accepting technique to
compute its placement solutions. However, in some cases it
is possible to get stuck in a local minimum solution, and
consequently, not finding the optimal placement. To avoid
this problem, the proposed methodology applies a Boolean
Satisfiability approach in order to allocate a transistor network
with any structure in a minimum width 1D layout. The
placement problem is described into a set of variables and
clauses according to pre-established placement constraints.
These clauses are computed by a SAT solver that defines
whether exists a set of variable assignment that satisfies all
the clauses.

In order to analyze the results, we compare our placement
solution with the layouts generated by the current ASTRAN
placement technique. The following aspects are considered in
this comparison: area, total wirelength (metal 1 and polysili-
con) and contacts. Our solution presented an equal or smaller
area in 88.68% of the cases, with 3.02% optimization. An
overhead of 0.82% was obtained in the total wirelength.
Finally, the number of contacts reduced 12.05%.

In future works, we intend to investigate other parameters
of the cell (such as power consumption and delay) in order to
have an accurate evaluation of our proposition.

ACKNOWLEDGMENTS

Research partially supported by Brazilian funding agencies
CAPES, CNPq and Fapergs.

REFERENCES

[1] Reis, A. “Design Automation of Transistor Networks, a new Challenge,”
Circuits and Systems (ISCAS), 2011 IEEE International Symposium
on,(Jul. 2011)., pp.2485-2488

[2] T. Uehara and W. M. vanCleemput, “Optimal Layout of CMOS Func-
tional Arrays,” in IEEE Transactions on Computers, Vol. C-30, No. 5,
pp-305-312, May 1979.

[3] J-M. Shyu, A. Sangiovanni-Vincentelli, J. P. Fishbum and A. E. Dun-
lop, “Optimization-based transistor sizing,” IEEE Journal of Solid-state
Circuits, Vol. 23, No. 2, pp.400-409, April 1988.

[4] A. Gupta, S-C. The and J. P. Hayes, “XPRESS: A Cell Layout Generator
with Integrated Transistor Folding,” In European Design and Test
Conference (Mar. 1996), 393-400.

[5] B. S. Carlson, “Transistor chaining and transistor reordering in the de-
sign of CMOS complex gates”, Ph.D. Dissertation, Syracuse University,
August 1991.

[6] T. Iizuka, M. Ikeda and K. Asada, “High speed layout synthesis for
minimum-width CMOS logic cells via Boolean satisfiability,” ASP-DAC
’04: Proceedings of the 2004 conference on Asia South Pacific design
automation, 2004, pp. 149-154.

[7] T. Iizuka, M. Ikeda and K. Asada, “Exact Minimum-Width Transistor
Placement for Dual and Non-dual CMOS cells,” IEICE Transactions on
Fundamentals of Electronics, Communications and Computer Sciences,
2005, pp. 3485-3491.

[8] D. D. Hill, “Sc2: A hybrid automatic layout system,” Proc.IEEE Int.
Conf. on Computer-Aided Design, pp. 172-174, Nov. 1985.

[9] C. Y. Hwang, Y-L. Lin and Y-C. Hsu, “LiB: A CMOS cell compiler,“
IEEE Trans. on Computer-Aided Design, Vol.10, pp. 994-1005, Aug
1991.

[10] A. Ziesemer, C. Lazzari, R. Reis, “Transistor level automatic layout
generator for non-complementary CMOS cells,” in Very Large Scale
Integration, 2007. VLSI - SoC 2007. IFIP International Conference on.
USA: IEEE, oct.2007, pp. 116-121.

[11] M. Soos, K. Nohl, and C. Castelluccia, “Extending SAT Solvers to
Cryptographic Problems,” In proc. of SAT, LNCS 5584, pp. 244-257,
Springer, 2009.

[12] Federal Univ. Rio Grande do Sul, Logics Lab. (Oct. 2012). Catalog of
53 Handmade Optimum Switch Networks.[Online]. Available:
http://www.inf.ufrgs.br/logics/docman/53 NSP Catalog.pdf

[13] Sutherland, I.; Sproull, B.; Harris. D. Logical Effort: Designing Fast
CMOS Circuits. Morgan Kaufmann Publishers, Inc., 1999.

Fig. 3. Geometrical comparatives regarding complex gates cells generated under the proposed and the original placement methodologies implemented into
ASTRAN CAD tool.

